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Emergent modified gravity presents a new class of gravitational theories in which the structure of
space-time with Riemannian geometry of a certain signature is not presupposed. Relying on crucial
features of a canonical formulation, the geometry of space-time is instead derived from the underlying
dynamical equations for phase-space degrees of freedom together with a covariance condition. Here,
a large class of spherically symmetric models is solved analytically for Schwarzschild-type black-
hole configurations with generic modification functions, using a variety of slicings that explicitly
demonstrates general covariance. For some choices of the modification functions, a new type of
signature change is found and evaluated. In contrast to previous versions discussed for instance in
models of loop quantum gravity, signature change happens on timelike hypersurfaces in the exterior
region of a black hole where it is not covered by a horizon. A large region between the horizon and
the signature-change hypersurface may nevertheless be nearly classical, such that the presence of a
signature-change boundary around Lorentzian space-time, or a Euclidean wall around the universe,
is consistent with observations provided signature change happens sufficiently far from the black
hole.

I. INTRODUCTION

One of the motivations of modified or quantum grav-
ity is that a consistent theory that goes beyond general
relativity at large curvature may be able to solve impor-
tant problems of the classical theory, such as the presence
of singularities. Solutions to these problems may result
from a classical alternative to general relativity, or from
a quantization. In the former case, it is necessary to cir-
cumvent the rigid status of general relativity as a largely
unique low-curvature theory of gravity and space-time
geometry. In the latter, one needs good control on possi-
ble effects expected from quantization. Depending on the
approach, there are various expectations as to what quan-
tum gravity might entail, such as fundamental discrete-
ness of space and time that could undo the usual con-
tinuum picture of a space-time manifold equipped with
Riemannian geometry. Because a fully discrete descrip-
tion of space-time is rather intractable, it is preferable
to proceed more carefully and see how the classical con-
tinuum theory could be modified by quantum or other
corrections as the curvature scale is increased. Such a
treatment has the advantage that Riemannian geometry
(and therefore an unambiguous meaning of the curvature
scale) remains applicable at least for some time on the
approach to large curvature. It also makes it possible to
retain a well-defined meaning of black holes through the
usual definition of a horizon.

In this way, one is led to effective line elements that, on
one hand, may include quantum or other modifications
and, on the other hand, make it possible to apply the
usual concepts of curvature and black holes. However,
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the application of line elements also means that covari-
ance must be maintained strictly at this level, even if one
expects that discrete or other fundamental space-time
structures may ultimately break continuous symmetries.
A line element, classical or effective, is well-defined only
if its metric coefficients transform in such a way that any
change of coordinate differentials is compensated for ex-
actly, implying an invariant line element. This property
cannot be tested if one works in a preferred gauge or
slicing of space-time, as often done in such models.

Within spherically symmetric models, a complete set of
covariant theories with second-order field equations has
recently been derived as emergent modified gravity [1, 2],
building on previous explicit models in which covariance
could be demonstrated [3, 4]. Even in vacuum, these the-
ories are more general than just the classical theory even
though they have the same derivative order of equations
of motion. The usual restrictions on invariant actions
based on curvature invariants can be circumvented by
exploiting subtle features of the canonical formulation of
space-time theories, which turn out to be more general
than action principles because they do not require as-
sumptions about the space-time volume element. In par-
ticular, within emergent modified gravity it is possible
to have a space-time geometry determined by a function
of the fundamental fields that follows from an evaluation
of the theory (and is in this sense emergent), in contrast
to action principles that require a fundamental metric
or tetrad field. Emergent modified gravity is formulated
canonically through a Hamiltonian that may be Legendre
transformed to a Lagrangian. However, the derivation
of the emergent metric makes use of further properties,
in particular of Poisson brackets of the canonical con-
straints, that are not available in a Lagrangian formula-
tion or an action principle. Therefore, to the best of our
knowledge, it is not possible to reproduce the effects dis-
cussed here based on an action formulation, even if one
restricts attention to regions of fixed metric signature.
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The available set of models is also more general than
the specific examples analyzed in [3, 4], in particular be-
cause some of the parameter choices make it possible to
have a covariant form of signature change. The rest of
this paper presents a detailed analysis of such models and
implications for black holes. Remarkably, we will find
closed-form analytical solutions even in the presence of
two generic modification functions. We therefore derive
geometrical properties that are universally valid within a
large class of emergent modified gravity. The underlying
theory and equations are presented in Section II, followed
by detailed derivations of solutions of Schwarzschild and
Painlevé–Gullstrand type in Section III, and a discussion
of causal structure focussing on the signature-change hy-
persurface in Section IV. Unlike in previous examples in
models of loop quantum gravity [5, 6], signature change
in the present examples happens on a timelike hypersur-
face located at low curvature. It is therefore important
that our solutions are valid for a sufficiently large class
of modification function that may imply this new type of
signature change and, at the same time, are consistent
with observations in a large part of space-time outside of
the black-hole horizon. We will see that this is indeed
possible.

II. EMERGENT MODIFIED GRAVITY OF

SPHERICALLY SYMMETRIC MODELS

A generic spherically symmetric line element can be
written as

ds2 = −N(t, x)2dt2+
e2(t, x)

2

e1(t, x)
(dx+M(t, x)dt)2+e1(t, x)dΩ

2

(1)
with the lapse function N , the shift vector M , and a
spatial metric derived from components e1 and e2 of a
densitized triad. (Without loss of generality, we assume
e1 > 0, fixing the orientation of the spatial triad.) On
a phase space given by the fields (e1, e2) and canonically
conjugate momenta (k1, k2), the dynamics is governed
completely by the diffeomorphism constraint

D[M ] =

∫

dx M (k′2e2 − k1e
′
1) (2)

and the Hamiltonian constraint [7, 8]

H [N ] =

∫

dxN

(

(e′1)
2

8
√
e1e2

−
√
e1

2e22
e′1e

′
2 +

√
e1

2e2
e′′1 − e2

2
√
e1

− e2k
2
2

2
√
e1

− 2
√
e1k1k2

)

. (3)

Classically, Hamilton’s equations generated by H [N ] +
D[M ] for e1 and e2 show that k1 and k2 are related to
components of extrinsic curvature of a constant-t slice in
a space-time with line element (1).

A. Covariance conditions

At the same time, the constraints generate gauge trans-
formations via Hamilton’s equations of H [ǫ0]+D[ǫ] with
gauge functions ǫ0 and ǫ, whose geometrical role as hyper-
surface deformations in spherically symmetric space-time
is determined by the Poisson brackets

{D[ ~M1], D[ ~M2]} = D[L ~M1

~M2] (4)

{H [N ], D[ ~M ]} = −H [L ~MN ] (5)

{H [N1], H [N2]} = D[e1e
−2
2 (N1N

′
2 −N2N

′
1)] . (6)

These gauge transformations make sure that the line ele-
ment (1) describes a well-defined space-time geometry
irrespective of the time coordinate t chosen to define
constant-t hypersurfaces: When the constraints D[M ] =
0 = H [N ] and the equations of motion they generate
are satisfied, gauge transformations of the canonical the-
ory are equivalent to coordinate transformations of (t, x)

on spherically symmetric space-time [9, 10]. This clas-
sic result makes it possible to interpret solutions of the
canonical theory as space-time geometries.

Such an interpretation relies on several properties of
the classical canonical theory that may easily be bro-
ken if the constraints are modified, for instance by pos-
sible quantum corrections. There are three broad con-
ditions of relevant structures being preserved: (i) The
modified constraints must remain first class, such that
their mutual Poisson brackets still vanish on the con-
straint surface. If this is the case, the modification does
not introduce gauge anomalies. (ii) For gauge symme-
tries of a modified theory to correspond to hypersurface
deformations in some space-time, the specific form of
the brackets (4)–(6) must be preserved. This condition
is stronger than just requiring first-class constraints be-
cause it prohibits modifications that could, for instance,
add a Hamiltonian constraint to the right-hand side of
(6). Such a modification would be first class, but it
would not have the correct form required for hypersur-
face deformations. One modification of the brackets is
nevertheless possible: The classical inverse radial met-
ric qxx = e1e

−2
2 in (6) could be replaced by a different

phase-space function, qxxem. The brackets would then be
compatible with hypersurface deformations in a modified
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(or emergent) space-time in which the inverse of the new
function qemxx = 1/qxxem (assuming, for now, that it is posi-
tive) provides the radial metric component. A candidate
space-time line element is then given by

ds2 = −N2dt2 + qemxx (dx+Mdt)2 + e1dΩ
2 . (7)

However, the condition on constraint brackets does not
guarantee that the phase-space function qemxx is subject
to gauge transformations compatible with coordinate
changes in an emergent space-time with line element (7).
There is therefore a third covariance condition, (iii), that
makes sure that gauge transformations of qemxx are equiv-
alent to coordinate changes of a radial metric component
if the constraint equations and equations of motion are
satisfied.
The three conditions are strong, but it turns out that

they leave room for modifications of the classical theory,
even in vacuum without introducing extra fields or higher
derivatives. (There are also compatible matter couplings
to perfect fluids [11] and scalar fields [12].) As a new fea-
ture, they make it possible to describe signature change
in a covariant manner within a single theory: If the clas-
sical e1e

−2
2 in (6) is replaced by a phase-space function γ

that is not positive definite, it can define a radial metric
only as qemxx = |γ|−1, while the compatibility of modified
gauge transformations with coordinate changes then re-
quires the sign of γ to multiply N2 in the time component
of the metric [13]. In general, the emergent space-time
line element therefore reads

ds2 = −sgn(γ)N2dt2 +
1

|γ|(dx +Mdt)2 + e1dΩ
2 (8)

if (6) is modified to

{H [N1], H [N2]} = D[γ(N1N
′
2 −N2N

′
1)] . (9)

These properties are valid in any gauge or slicing, but
their specific evaluations depend on gauge choices (such
as setting M = 0) as we will see in our explicit examples.
An interesting (though not completely general) class of

modified theories can be obtained by replacing H [N ] of
the classical theory with a linear combination H [αN ] +
D[βN ] where α and β are suitable phase-space functions.
The diffeomorphism constraint is left unmodified such
that the spatial structure remains classical. The fact
that a linear combination of algebra generators can mod-
ify the resulting dynamics is somewhat counter-intuitive
but, as explained in detail in [1, 14], it is possible because
the Hamiltonian constraint H [N ], by definition, gener-
ates hypersurface deformations in the normal direction.
Redefining the Hamiltonian constraint therefore changes
the normal direction nµ, and the latter together with the
inverse spatial metric qµν determines the inverse space-
time metric gµν = qµν − nµnν . A redefined Hamiltonian
constraint may then change the compatible space-time
geometry of solutions, even though it does not modify
the constraint surface on which H [N ] = 0 and D[M ] = 0.

However, there is a well-defined space-time geometry only
if our conditions (i)–(iii) formulated above are satisfied.
These conditions, specialized to linear combinations of

the Hamiltonian and diffeomorphism constraints, have
been evaluated in [1]. Condition (i) is automatically sat-
isfied in this case. Condition (ii), requiring the specific
form of hypersurface-deformation brackets, implies that
α and β are related by

β(e1, k2) = −
√
e1e

′
1

2e22

∂α

∂k2
− 2

√
e1k2

∂α

∂e′1
. (10)

Condition (iii), imposing covariance in the sense that the
resulting modified structure function γ transforms like an
inverse radial metric, then requires that

α(e1, k2) = µ(e1)
√

1− sλ(e1)2k22 (11)

with two free functions µ and λ, depending only on e1.
Moreover, for later convenience, a sign factor s = ±1 has
been extracted explicitly in this equation.
Using all the conditions, the equation resulting from

(ii) leads to

β(e1, k2) = µ(e1)

√
e1

2e22

∂e1
∂x

sλ(e1)
2k2

√

1− sλ(e1)2k22
(12)

while the modified structure function equals

γ = µ(e1)
2

(

1 +
1

4e22

sλ(e1)
2

1− sλ(e1)2k22

(

∂e1
∂x

)2
)

e1
e22

. (13)

We obtain the emergent radial metric

qemxx = µ(e1)
−2

∣

∣

∣

∣

∣

1 +
1

4e22

sλ(e1)
2

1− sλ(e1)2k22

(

∂e1
∂x

)2
∣

∣

∣

∣

∣

−1
e22
e1

(14)
and the signature factor

ǫ = sgn(γ) = sgn

(

1 +
1

4e22

sλ(e1)
2

1− sλ(e1)2k22

(

∂e1
∂x

)2
)

.

(15)
These two expressions define the emergent space-time
line element

ds2em = −ǫN2dt2 + qemxx (dx+Mdt)(dx+Mdt) + e1dΩ
2 .

(16)
The inverse space-time metric equals

gµνem =
1

qemxx
sµxs

ν
x+

1

e1

(

sµϑs
ν
ϑ + csc(ϑ)sµϕs

ν
ϕ

)

−nµnν , (17)

where

nµ =
1

N
(tµ −Msµx) (18)

with a spatial basis (sµx , s
µ
ϑ, s

µ
ϕ).
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B. The signature-change hypersurface

Models with s = −1 have not been studied in detail
yet. While s = 1 implies a positive definite structure
function, which then directly determines the inverse spa-
tial metric, s = −1 may allow for ranges of x in which γ
is negative. The emergent space-time then has Euclidean
signature in such a region, separating it from Lorentzian
signature at positive γ by a signature-change hypersur-
face in space-time. Such hypersurfaces are defined by
γ(tsc, xsc) = 0, which may have disjoint solutions for
(tsc, xsc), implying multiple signature-change hypersur-
faces in general. A signature-change hypersurface may
be timelike or spacelike depending on where it appears
relative to horizons. In black-hole models, a signature-
change hypersurface that occurs in a static (exterior) re-
gion is timelike because γ can depend only on the spatial
coordinate x, which lies in a discrete set of values deter-
mined by γ(xsc) = 0. In a spatially homogeneous model
for a black-hole interior, γ depends only on the time co-
ordinate t, such that a signature-change hypersurface in
this region is spacelike, determined by t = tsc with a so-
lution tsc of γ(tsc) = 0. We will see that s = −1 in our
models can only lead to timelike signature-change hy-
persurfaces at a unique value of xsc. The following dis-
cussion of general properties is based on this outcome,
but similar statements can easily be made for spacelike
signature-change hypersurfaces as well.
In a static region, the occurrence of a timelike

signature-change hypersurface requires that the structure
function vanishes at a certain value of x = xsc. (If the
region is not static but the signature-change hypersur-
face remains timelike, it is always possible to introduce
local coordinates such that the hypersurface is defined
by a constant value of the radial coordinate.) Starting
in a range of x-values for which the emergent space-time
metric has Lorentzian signature, inspection of the inverse
metric (17) reveals that near the signature-change hyper-
surface, space-time degenerates into a family of (2 + 1)-
dimensional geometries with inverse metric

gµνem ≈ 1

x2
sc

(

sµϑs
ν
ϑ + csc2(ϑ)sµϕs

ν
ϕ

)

− nµnν (19)

and topology R×S2. Approaching the hypersurface from
the Euclidean region, the signature-change hypersurface
is the limiting case of a family of spacelike hypersurfaces.
It then follows that the radial component of the emer-

gent metric (14) diverges at xsc. This conclusion holds ir-
respective of the gauge or coordinate system used because
det(g−1) = 0 is a coordinate invariant statement. There-
fore, there is no coordinate choice that can remove this
divergence of a metric component, implying a physical
singularity according to the standard definition. How-
ever, invariant objects such as the Ricci scalar are not

necessarily singular at a signature-change hypersurface.
Our model in spherical symmetry derived below provides
an example of a signature-change hypersurface with a
non-singular geometry.
The standard definition of geodesic incompleteness

might also suggest a physical singularity because timelike
geodesics from the Lorentzian region cannot be extended
as timelike geodesics into the Euclidean region. How-
ever, there may be extensions to spacelike geodesics if it
is possible to use the final values of a timelike geodesic in
the Lorentzian region as initial conditions for a spacelike
geodesic in the Euclidean region. An important question
related to geodesic completeness is whether such an ex-
tension is unique, which requires a well-defined tangent
vector at the hypersurface as well as a continuous set of
coordinate transformations that can be applied in a re-
gion across the signature-change hypersurface. Details
of such extensions require specific models, but the main
challenging property can be inferred from the behavior of
the space-time metric that gives rise to signature change
on a timelike hypersurface.

Assuming a timelike signature-change hypersurface at
x = xsc, the radial component qemxx of the metric diverges
at this value. Normalization of the tangent vector of a
geodesic approaching the hypersurface,

−1 = −N2

(

dt

dτ

)2

+ qemxx

(

dx

dτ

)2

(20)

+e1

(

dϑ

dτ

)2

+ e1 sin
2 ϑ

(

dϕ

dτ

)2

then requires that vx = dx/dτ approaches zero or
that some of the other velocity components diverge at
the signature-change hypersurface. In both cases, the
geodesic is asymptotically tangent to the hypersurface
and does not provide a unique final direction into the Eu-
clidean region on the other side of the hypersurface. A
similar argument follows from lightlike geodesics, which
in the radial case require a divergent

dt

dx
=

√

qemxx
N

(21)

at the hypersurface. In our specific models we will show
that the hypersurface may nevertheless be reached at a fi-
nite distance from an interior point of the complete space-
time manifold, including the Euclidean region.

C. Hamiltonian constraints

Using the explicit solutions for α and β, the new Hamil-
tonian constraint is given by the expression



5

H(new)[N ] =

∫

dxNµ
√

1− sλ2k22

(

(

1

8
√
e1e2

− sλ2

√
e1

2e22

k1k2
1− sλ2k22

)

(e′1)
2

−
√
e1

2e22
e′1e

′
2 +

√
e1

2e2
e′′1 + sλ2

√
e1

2e22

e2k2
1− sλ2k22

e′1k
′
2

− e2
2
√
e1

− e2k
2
2

2
√
e1

− 2
√
e1k1k2

)

(22)

for given s, µ and λ.
The form of functions α, β and γ makes use of the

phase-space variables (e1, e2) and (k1, k2) initially ob-
tained in the classical theory. However, modifications of
equations of motion and of the structure function imply
that (e1, e2) no longer are densitized-triad components of
the emergent spatial metric, and (k1, k2) are no longer di-
rectly related to components of extrinsic curvature. It is
therefore possible to apply canonical transformations, in-
troducing further changes in the phase-space dependence
of α, β and γ. Such transformations do not change phys-
ical or geometrical implications, but they may sometimes
be convenient for solving or interpreting equations. The
specific versions (11), (12) and (13) are unique up to
canonical transformations, provided modifications hap-
pen only by replacing the Hamiltonian constraint with
a suitable linear combination of the classical constraints.
As an example, the models analyzed in [3, 4] are equiva-
lent to our case of s = +1 and constant µ and λ with a
specific relationship between these two constants, up to

a canonical transformation of (e2, k2). Canonical trans-
formations can be used to extend these models to non-
constant λ, and to describe the case of s = −1 by similar
means.

1. Periodic variables: Lorentzian case

For the case of s = 1, we perform the canonical trans-
formation

k2 =
sin(λk̃2)

λ
, e2 =

ẽ2

cos(λk̃2)
,

k1 = k̃1 +
ẽ2

cos(λk̃2)

∂

∂e1

(

sin(λk2)

λ

)

, e1 = ẽ1 (23)

where the new variables are written with a tilde. The
Hamiltonian constraint (22) then becomes

H
(c)
+ [N ] =

∫

dx Nµ

(

(

cos2(λk2)

8
√
e1e2

− λ2

√
e1

2e22

(

k1 + e2k2
∂ lnλ

∂e1

)

sin(2λk2)

2λ

)

(e′1)
2

−
√
e1

2e22
e′1e

′
2 cos

2(λk2) +

√
e1

2e2
e′′1 cos

2(λk2)−
e2

2
√
e1

− e2
2
√
e1

sin2(λk2)

λ2

−2
√
e1

(

k1
sin(2λk2)

2λ
+ e2

(

sin(2λk2)

2λ
k2 −

sin2(λk2)

λ2

)

∂ lnλ

∂e1

)

)

(24)

where we have dropped the tilde for the sake of conve-
nience, with structure function

qxx(c)+ = µ2 cos2(λk2)

(

1 + λ2

(

e′1
2e2

)2
)

e1
e22

. (25)

This transformation replaces square roots by trigonomet-
ric functions, but the dependence on k2 is not periodic
unless λ does not depend on e1. (Periodic dependence on
k2 is often desired in models of loop quantum gravity.)

A second canonical transformation,

k2 =
λ̄

λ
k̃2 , e2 =

λ

λ̄
ẽ2 ,

k1 = k̃1 − ẽ2k̃2
∂ lnλ

∂ẽ1
, e1 = ẽ1 (26)

where λ̄ is an arbitrary non-zero constant, can be used
to make the Hamiltonian constraints strictly periodic in
k2:
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H
(cc)
+ [N ] =

∫

dxN
λ̄

λ
µ

[

((

1

8
√
e1e2

−
√
e1

2e2

∂ lnλ

∂e1

)

cos2(λ̄k2)− λ̄2

√
e1

2e22
k1

sin(2λ̄k2)

2λ̄

)

(e′1)
2

−
√
e1

2e22
e′1e

′
2 cos

2(λ̄k2) +

√
e1

2e2
e′′1 cos

2(λ̄k2)−
e2

2
√
e1

− e2
2
√
e1

sin2(λ̄k2)

λ̄2

−2
√
e1

(

k1 − e2
tan(λ̄k2)

λ̄

∂ lnλ

∂e1

)

sin(2λ̄k2)

2λ̄

]

(27)

where we have again dropped the tilde, with structure
function

qxx(cc)+ =
λ̄2

λ2
µ2 cos2(λ̄k2)

(

1 + λ̄2

(

e′1
2e2

)2
)

e1
e22

.(28)

The constraint (27) and its structure function (28) are
periodic in the new k2. In this sense, they are related
to models of loop quantum gravity in which this peri-
odicity is usually interpreted as a necessary requirement
for gauge theories based on holonomies. However, the
specific terms in (27) are different from most models
that have been considered in this context. Moreover, in
past developments of spherically symmetric loop quan-
tum gravity it has been tacitly assumed that the classi-
cal e22/e1 still describes a meaningful radial metric. As

shown by emergent modified gravity, this assumption and
any deviations of a modified Hamiltonian constraint from
(27) violate general covariance and do not imply reliable
effective line elements.

2. Hyperbolic variables: Signature-change case

The constraint (22) with s = −1 is mathematically
equivalent to the case s = 1 with the substitution λ →
iλ. Furthermore, in the canonical transformations used
in the previous sections we may replace trigonometric
functions with hyperbolic ones. Therefore, the case s =
−1 with hyperbolic canonical transformations can simply
be expressed as (27) with the substitutions λ → iλ and
λ̄ → iλ̄:

H
(cc)
− [N ] =

∫

dxN
λ̄

λ
µ

[

((

1

8
√
e1

−
√
e1

2

∂ lnλ

∂e1

)

cosh2(λ̄k2) + λ̄2

√
e1

2

k1
e2

sinh(2λ̄k2)

2λ̄

)

(e′1)
2

e2

+

√
e1

2

(

e′′1
e2

− e′1e
′
2

e2

)

cosh2(λ̄k2)−
e2

2
√
e1

(

1 +
sinh2(λ̄k2)

λ̄2

)

−2
√
e1

(

k1 − e2
tanh(λ̄k2)

λ̄

∂ lnλ

∂e1

)

sinh(2λ̄k2)

2λ̄

]

(29)

with structure function

qxx(cc)− =
λ̄2

λ2
µ2 cosh2(λ̄k2)

(

1− λ̄2

(

e′1
2e2

)2
)

e1
e22

.(30)

The case of s = −1, studied as the main example in what
follows, may therefore be interpreted as a hyperbolic ver-
sion of covariant models for spherically symmetric loop
quantum gravity.

3. Possible interpretations of the modification functions

Canonical transformations can be used to bring modi-
fications closer to versions that have occurred in different

approaches to quantum gravity, thereby helping to find
suitable interpretations of modification functions. For
instance, the transformation applied for s = 1, leading
to periodic modifications in k2, suggests that λ in this
case may be viewed as a covariant implementation of the
holonomy length in models of loop quantum gravity. This
function would then be related to the fundamental dis-
creteness scale of quantum space-time.

For s = −1, the k2-dependence is not periodic and
therefore does not correspond to models of standard loop
quantum gravity. However, the modified constraint may
be viewed as a model of loop quantization with a non-
compact local gauge group SO(2, 1) instead of SO(3) (or
their covering groups). Non-compact groups are not of-
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ten considered in loop quantum gravity because they lead
to unbounded basic operators and are therefore harder to
implement. However, they might well play a role depend-
ing on how reality conditions are solved.
Alternatively, both λ(e1) and µ(e1) may appear

through Hamiltonian renormalization in which e1 povides
the running scale. The function µ(e1) in particular would
have a simple interpretation as a renormalization of New-
ton’s constant. In contrast to standard renormalization,
emergent modified gravity does not require the renor-
malization scale to be a Lorentz scalar, as observed in an
application to modified Newtonian dynamics (MOND)
[15].

III. SOLUTIONS

Canonical equations of gravitational theories provide
unique solutions only if certain gauge choices are made
that specify the coordinate frame or slicing in which the
corresponding space-time geometry is expressed. The
main classical slicing conditions used in spherically sym-
metric models can be generalized to emergent modified
gravity, as shown in this section.

A. Schwarzschild-like exterior

We will be using space-time solutions in various gauges
when we analyze geodesics and other properties of emer-
gent modified gravity. For constant µ and λ, the case of
s = 1 has been analyzed in [3, 4], while the case of s = −1
has been discussed briefly in [16]. In particular, the latter
contribution shows the possibility of signature change for
s = −1 at large x in the exterior region of a black hole.
However, this is possible only if λ > 1, implying signifi-
cant modifications of gravity even in intermediate ranges
of x that should be directly accessible by observations. It
is therefore important to confirm that signature change is
still possible if λ is no longer constant and may increase
from small values in observationally accessible regimes to
larger values at the outer fringes of the universe. One of
the main results of the present paper is that this is in-
deed possible. We will see that most of the calculations
for constant λ go through with only minimal changes if λ
is not constant. Our derivations in the remainder of this
section are based on the form (22) of the Hamiltonian
constraint.
We first compute the line element of a static region

of space-time suitable for the exterior of a non-rotating

black hole. We directly obtain M = 0, ė1 = 0 = ė2 and
therefore k1 = 0 = k2, which allows us to fix the spatial
gauge by declaring that e1(x) = x2. All these equations
take their classical form, and with vanishing k-terms for
static configurations, the Hamiltonian constraint is clas-
sical too (up to an additional multiplier of µ). It implies

e2(x) = x/
√

1− 2m/x where, based on the position of
the horizon, the integration constant m turns out to have
the same interpretation as mass as in the classical solu-
tion.

There are additional consistency conditions from the
requirement that k̇1 = 0 and k̇2 = 0 for static behavior
are compatible with the equations of motion. They imply
almost the same result as in the classical theory,

Nαµ =

√

1− 2m

x
(31)

where α is a constant and can be considered a rescaling
of the time coordinate. This parameter can be used to
cancel µ only if the latter is constant, but not if it de-
pends on e1 and therefore on x. For non-constant µ, m
retains its interpretation of mass if the latter is defined
via the Schwarzschild radius at 2m. (If µ is asymptoti-
cally constant such that µ−const falls off faster than 1/x,
interpreting m as the mass would also be consistent with
Newton’s potential. However, depending on s and λ, the
asymptotic limit can be very non-classical and may no
longer be a suitable indicator of the mass.)

None of the solutions for phase-space variables are sig-
nificantly modified in this gauge. However, the emer-
gent space-time metric, and therefore space-time geom-
etry, does have non-trivial corrections. For covariance
of this gauge within a well-defined space-time geometry,
the emergent space-time metric must be compatible with
the full modified constraint and not just with its static
restriction in which all k-terms disappear. The result-
ing radial metric component, given in general by (14),
evaluates to

qemxx =
ǫe22

µ2e1(1 + sλ2x2/e22)
(32)

in the present case, with k2 = 0, e1 = x2 and the signa-
ture factor

ǫ = sgn(1 + sλ2x2/e22) . (33)

We obtain the emergent space-time line element

ds2em = −ǫ

(

1− 2m

x

)

dt2

α2µ2
+

ǫdx2/µ2

(1 − 2m/x)(1 + sλ2(1− 2m/x))
+ x2dΩ2 (34)

= −ǫ

(

1− 2m

x

)

dt2

α2µ2
+

−sǫ

α2µ2(λ2 + s)

(

1− 2m

x

)−1(
Xλ

x
− 1

)−1

dx2 + x2dΩ2
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if we introduce the function

Xλ(x) =
2mλ(x)2

λ(x)2 + s
. (35)

The signature-change hypersurface is located at x = xλ

with an implicit equation

xλ = Xλ(xλ) =
2mλ(xλ)

2

λ(xλ)2 + s
(36)

for xλ, provided λ2 + s 6= 0. (For constant λ, Xλ is

constant and (36) directly defines xλ in terms of λ.) The
signature factor evaluates to

ǫ ≡ sgn

(

−s(λ2 + s)

(

Xλ

x
− 1

))

. (37)

For s = 1, xλ < 2m is not in the static exterior and
ǫ = sgn(µ2(1+λ2)(1−Xλ/x)) = 1 for x > 2m, such that
there is no signature change in this case. The resulting
line element

ds2em = −
(

1− 2m

x

)

dt2

α2µ2
+

1

µ2(1 + λ2)

(

1− 2m

x

)−1(

1− Xλ

x

)−1

dx2 + x2dΩ2 (38)

is asymptotically flat in a strict sense only if µ and λ are
asymptotically constant for x ≫ 2m. (If this condition
is not satisfied, the line element is quasi-asymptotically
flat [17]; see also [18].)
If s = −1, the emergent spatial metric is positive

definite if λ < 1. If λ = 1 in a region of space,
ǫ = sgn(−2sλ2m/x) = 1 and the line element is given
by

ds2em = −
(

1− 2m

x

)

dt2

α2µ2
+

x/(2m)

1− 2m/x

dx2

µ2λ2
+ x2dΩ2

(39)
If λ > 1, we have ǫ = 1 for x < xλ, with a Loretzian-
signature line element

ds2em = −
(

1− 2m

x

)

dt2

α2µ2
(40)

+
dx2/(µ2(λ2 − 1))

(1− 2m/x)(Xλ/x− 1)
+ x2dΩ2 ,

and ǫ = −1 for x > xλ with a Euclidean-signature line
element

ds2em =

(

1− 2m

x

)

dt2

α2µ2
(41)

+
dx2/(µ2(λ2 − 1))

(1− 2m/x)(1−Xλ/x)
+ x2dΩ2 .

There is therefore Euclidean-signature 4-dimensional
space surrounding Lorentzian space-time containing a
black hole. For non-constant λ, the Lorentzian geometry
can be compatible with observations if λ is sufficiently
small for a suitable range of x. If λ grows beyond the
value one for larger x, we enter the signature-change re-
gion.

The Ricci scalar of (40) is given by

R =

(

2

x2
+

(

2

x2
− 3mxλ

x4

)

µ2(λ2 − 1)

)

+ µ2(λ2 − 1)
(3m− 2x)

x3
X ′

λ

+
(λ2 − 1)(x− 2m)

2x2
(µ2)′X ′

λ +
(2m− x)(x −Xλ)

2x2
(µ2)′(λ2 − 1)′

+
(λ2 − 1)(2m− 4x+ 3Xλ)

2x2
(µ2)′ − (λ2 − 1)(2m− x)(x −Xλ)

µ2x2
((µ2)′)2

+
(λ2 − 1)(2m− x)(x −Xλ)

x2
(µ2)′′ − (3m− 2x)(x−Xλ)

x3

(

µ2(λ2 − 1)
)′

(42)

where the primes denote x-derivatives. The Ricci scalar remains finite at the signature-change hypersurface at x = xλ.
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The Kretschmann scalar K ≡ RµναβR
µναβ evaluates to

K

=
µ4(λ2 − 1)2

x8

(

4x2

µ4(λ2 − 1)2
+

8x2

µ2(λ2 − 1)
(x− 2m) (x−Xλ) + 4x2

(

x2 − 4mx+ 12m2
)

−8x
(

x2 − 5mx+ 15m2
)

Xλ +
(

6x2 − 32mx+ 81m2
)

X2
λ

)

+
4λ
(

λ2 − 1
)

µ4(x−Xλ)
(

3m2(7Xλ − 4x) + 4mx(x− 3Xλ) + 2x2Xλ

)

x7
λ′

+
4λ2µ4

(

9m2 − 8mx+ 2x2
)

(x −Xλ)
2

x6
(λ′)2

+
8λ
(

λ2 − 1
)

µ3(x−Xλ)
(

2m2 +m(5Xλ − 6x) + 2x(x−Xλ)
)

x5
λ′µ′

+
8λ2µ3m(2m− x)(x −Xλ)

2

x5
(λ′)2µ′

−4λ
(

λ2 − 1
)

µ2(2m− x)(x −Xλ)(6mx− 8mXλ + xXλ)

x5
λ′(µ′)2

+
2
(

λ2 − 1
)2

µ3
(

2m2
(

8x2 − 14xXλ + 7X2
λ

)

+mxXλ(11xλ − 12x) + 4x2Xλ(x−Xλ)
)

x7
µ′

+
K1(x)

x6
(µ′)2 +

K2(x)

x6
µ′′

+
µ4(λ2 − 1)2(x − 2m)2

4α4µ4x4
((µ2(λ2 − 1))′)2((Xλ)

′)2

+
µ4(λ2 − 1)2m(2m− x)

α2µ2x5
(µ2(λ2 − 1))′((Xλ)

′)2

+
µ4(λ2 − 1)2

(

9m2 − 8mx+ 2x2
)

x6
((Xλ)

′)2

−µ4(λ2 − 1)2(2m− x)(x −Xλ)
(

2α2µ2m+ x(2m− x)(α2µ2)′(x)
)

α2µ4x5
X ′

λ(µ
2)′′

+
K3(x)

2µ2x6
X ′

λ(µ
2(λ2 − 1))′

+
3µ4(λ2 − 1)2(x− 2m)2(x−Xλ)

2µ6x4
X ′

λ((µ
2)′)3

+
µ4(λ2 − 1)2(2m− x)(2m(6x − 7Xλ) + xXλ)

2µ2x5
X ′

λ((µ
2)′)2

+µ4(λ2 − 1)2
2m
(

7mx− 9mXλ − 2x2 + 3xXλ

)

µ2x6
X ′

λ(µ
2)′

+
2µ4(λ2 − 1)2

(

3m2(4x− 7Xλ)− 4mx(x− 3Xλ)− 2x2Xλ

)

x7
X ′

λ (43)

with

K1(x) =
(

λ2 − 1
)2

µ2
(

X2
λ

(

140m2 − 96mx+ 17x2
)

− 4xXλ

(

62m2 − 43mx+ 8x2
)

+16x2
(

7m2 − 5mx+ x2
))

K2(x) = −4
(

λ2 − 1
)2

µ3m(2m− x)(4x− 5Xλ)(x −Xλ)

+8λ
(

λ2 − 1
)

µ3m(2m− x)(x −Xλ)
2xλ′

K3(x) = (λ2 − 1)(x−Xλ)
(

x(x− 2m)(µ2)′
(

4µ2m+ x(2m− x)(µ2)′
)

−4µ4
(

9m2 − 8mx+ 2x2
))

(44)



10

This expression is also finite at the signature-change hypersurface where it takes the value

K|x=xλ
=

1

4x6
λ

(

8µ4(λ2 − 1)2(xλ − 2m)2 (X ′
λ(xλ)− 1)

2
+ 16x2

λ

µ4(λ2 − 1)2 (X ′
λ(xλ)− 1)

2 (
xλ(xλ − 2m)(µ2)′ − 2µ2m

)2

µ4

)

. (45)

Both scalars retain their classical divergence at x = 0. (In
the next subsection we will see that the exterior solution
can be extended to x < 2m in the usual way by flipping
the role of radial and time coordinates.)
We conclude that the singularity at x = xλ in the

metric (40) may be consistent with an interpretation as
a coordinate singularity.

B. Homogeneous interior

In the classical Schwarzschild solution, the interior ge-
ometry for x < 2m can be obtained from the exterior
solution by flipping the roles of t and x as time and
space, respectively. In emergent modified gravity, only
the spatial part of the metric contains additional terms
based on the covariance condition, while the time compo-
nent, through the lapse function, may be modified only
indirectly based on the equations it has to solve in a
given gauge. It is therefore not clear that simply flip-
ping t and x correctly transfers additional terms in the
emergent spatial metric from the radial part to the time
component. In the present case, an explicit independent
derivation of the interior solution demonstrates that the
classical procedure nevertheless applies.
As part of the gauge choice for a Schwarzschild-type

interior, we assume that all fields, e1, e2, k1, k2 and N ,
depend only on a time coordinate T , and that M = 0.
The function e1 was fixed by a simple gauge choice in
the exterior. Flipping the coordinates is possible only if
we have the same simple choice in the interior, but now
as a dependence e1(T ) = T 2 on the new time coordinate
T . The modification functions µ and λ may therefore be
time dependent.
This e1 has to be compatible with the equation of mo-

tion

ė1 = −2µN
√
e1k2

√

1− sλ2k22 , (46)

which, using ė1 = 2T = 2
√
e1, relates N to k2 by

N = − 1

µk2
√

1− sλ2k22
. (47)

The equation of motion for k2,

k̇2 =
µN

2
√
e1

√

1− sλ2k22
(

1 + k22
)

= − 1

2T

1 + k22
k2

, (48)

can then be solved directly by

k2(T ) =

√

2m

T
− 1 . (49)

Anticipating the final form of the line element, we iden-
tified an integration constant with (twice) the mass m.
The other momentum, k1, is determined by

k1 = − me2
2T 2 (2m− T )

k2 = −m
√
2m− T

2T 5/2
e2 (50)

using the Hamiltonian constraint. The final equation of
motion then implies

ė2 = −µN
√

1− sλ2k22

(

e2k2√
e1

+ 2
√
e1k1

)

=
1

2
e2

(

1

T
− 1

2m− T

)

(51)

which is solved by

e2(T ) = α−1
√

T (2m− T ) (52)

with an integration constant α. Note that the free func-
tions µ and λ canceled out in all the differential equations
we had to solve. The solutions are therefore valid for any
µ and λ depending on T through e1.
We now have complete solutions for all phase-space

functions and can compute the lapse function

N = − 1

µ
√

(2m/T − 1) (1− sλ2 (2m/T − 1))
(53)

as well as the emergent radial metric component

qemXX =
e22

µ2e1
=

1

α2µ2

(

2m

T
− 1

)

. (54)

The space-time metric equals

ds2em = − dT 2/µ2

(2m/T − 1)(1 + sλ2 − 2msλ2/T )

+

(

2m

T
− 1

)

dX2

α2µ2
+ T 2dΩ2 (55)

where, without loss of generality, we can absorb the con-
stant α in the radial coordinate X , or we can keep it to
cancel µ in the case where it is constant.
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The range of the time coordinate T is determined by
the condition that N is real. In the emergent space-time
metric, N2 is always positive and cannot be split into
a sign factor and a lapse function squared as the radial
metric component. To recall, the radial metric compo-
nent is determined by the structure function γ which may
be positive or negative (or zero). According to the struc-
ture of hypersurface deformations, this function deter-
mines the signature of space-time as well as the spatial
metric. The lapse function does not appear in structure
functions and therefore can only be used in the classical
form, such that N2 is positive and multiplies sgn(γ)dt2.
Using this condition, T has the maximal value Tmax =

2m at the horizon as a boundary of the interior region.
Its minimum value is T−

min = 0 for s = −1, in which case
1− sλ2(2m/T − 1) in the lapse function remains positive
for all T such that 2m/T > 1. For s = 1, there is a
positive lower bound on T determined by

T+
min =

2mλ2

1 + λ2
. (56)

If λ is not constant, this is an implicit equation for T+
min.

The coordinate chart constructed here then ends, and at
least in the case of constant λ it can be extended to an ex-
panding interior solution as shown in [3, 4]. There is no
signature-change hypersurface in these models because
the structure function γ remains positive in the allowed
ranges of T . It is now easy to confirm that the line el-
ements (55) and (34) are indeed related by a simple flip
of space and time coordinates, T = x and X = t, using
the Lorentzian solution with ǫ = 1 in the latter case.

C. Painlevé–Gullstrand line element

An interesting gauge choice that allows transitions
through the horizon in classical general relativity is given
by the Painlevé–Gullstrand solution. We will first derive
a suitable form in emergent modified gravity by applying
coordinate transformations from the exterior and inte-
rior solutions already found, and then confirm that the
resulting metric components also follow uniquely from
the constrained system.

1. Coordinate transformation from the static Schwarzschild

gauge

In order to derive a suitable coordinate transformation,
we first observe that the metric (41) has the Killing vector
ξµ(t)∂µ = ∂t. A timelike geodesic with tangent vector uµ

then has the conserved quantity e = −gµνξ
µ
(t)u

ν = −ut,

where gµν refers to the emergent space-time metric. This
equation tells us that ut always remains finite even if we
approach a signature-change hypersurface where some of
the components of gµν may diverge.
Using the normalization condition

gµν(dx
µ/dτ)(dxν/dτ) = −ǫ for the tangent vector

uµ = dxµ/dτ of a geodesic, with the signature factor ǫ,
a geodesic can be described by the 1-form

ǫdτ = −uµdx
µ = −utdt− uxdx . (57)

A generalization of the classical Painlevé–Gullstrand
gauge can be defined by requiring that the new time
coordinate tPG equals proper time along infalling radial
geodesics, while the spatial coordinate x remains un-
changed compared with the Schwarzschild solution. If we
compute the components ut and ux using normalization
and conserved quantities, we can integrate the resulting
dτ and obtain tPG as a function of t and x. Keeping
track of the signature factor ǫ, this construction can be
used in Lorentzian and Euclidean regions.
Normalization

−ǫ = uµuνg
µν (58)

with the inverse metric (17) and the signature factor ǫ
implies

ǫ

(

− u2
t

N2
+ 1

)

+ 2ǫ
M

N2
utux +

(

qxx + ǫ
M2

N2

)

u2
x = 0(59)

in general. For zero shift in the original space-time, M =
0, this equation simplifies to

qxx(ux)
2 = ǫ

(

u2
t

N2
− 1

)

(60)

If there is signature change at large x, it is not mean-
ingful to identify ut with the conserved energy e as mea-
sured by an asymptotic observer. Instead, we can evalu-
ate the normalization condition at some reference point
such as xλ of the signature-change hypersurface where
qxx = 0. Therefore, u2

t = N(xλ)
2, or

ut =
√

N2 + ǫN2qxx(ux)2
∣

∣

x0

, (61)

at a generic reference coordinate x0. The different val-
ues for ut parametrize the proper time of the different
observers. If we choose an observer at rest at x0 < xλ

(where qxx 6= 0) and use (41), we obtain

ut = − ǫ

αµ(x0)

√

1− 2m

x0
. (62)

The sign choice is such that

ut(x0) =
αµ(x0)

√

1− 2m/x0

(63)

is future-pointing. One can then take the limit x0 →
xλ for timelike geodesics that are formally at rest at
the signature-change surface. Only values in the range
x0 ≥ xλ imply initial values for timelike geodesics in the
Lorentzian region that reach the signature-change hyper-
surface. (There are no timelike geodesics starting at x0

if this value is in the Euclidean region, but we may make
a choice x0 > xλ just to specify certain initial values of a
timelike geodesic at x < xλ that is not at rest anywhere.)
Equation (60) then implies
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ux(x) = ±
√

ǫqxx(x)

(

u2
t

N(x)2
− 1

)

= s2
1

1− 2m/x

1
√

|λ(x)2 − 1| |1−Xλ/x|

√

ǫ

(

1− 2m/x0

µ(x0)2
− 1− 2m/x

µ(x)2

)

(64)

with s2 = ±1. Since the signature factor ǫ changes at x = xλ, the square root is real provided (1 − 2m/x)/µ(x)2 is

increasing across xλ, which is the case for any µ(x) that does not increase faster than
√

1− 2m/x.
The coordinate transformation from t to tPG(t, x) is now determined by

dtPG = −utdt− uxdx (65)

=
ǫ√

αµ(x0)

√

1− 2m

x0
dt

−s2
1

1− 2m/x

1
√

|λ(x)2 − 1| |1−Xλ(x)/x|

√

ǫ

(

1− 2m/x0

µ(x0)2
− 1− 2m/x

µ(x)2

)

dx .

It is impossible to integrate this equation for generic λ(x) and µ(x), but it is easy to check that the integrability
condition ∂2tPG/∂t∂x = ∂2tPG/∂x∂t is satisfied.
Writing

dtPG = ǫN(x0)dt− s2

√

qxxǫ

(

N(x0)2

N(x)2
− 1

)

dx , (66)

we obtain

−ǫN(x)2dt2 + ǫqxxdx
2 = −ǫ

N(x)2

N(x0)2

(

dtPG + s2

√

ǫqxx

(

N(x0)2

N(x)2
− 1

)

dx

)2

+ ǫqxxdx
2

= −ǫdt2PG − ǫ

(

N(x)2

N(x0)2
− 1

)

dt2PG (67)

−2ǫs2
N(x)2

N(x0)2

√

ǫqxx

(

N(x0)2

N(x)2
− 1

)

dtPGdx+ ǫqxx
N(x)2

N(x0)2
dx2

= −ǫdt2PG + ǫqxx
N(x)2

N(x0)2

(

dx− ǫs2

√

ǫqxx
(

N(x0)2

N(x)2
− 1

)

dtPG

)2

.

The emergent line element therefore equals

ds2em = −ǫdt2PG + ǫ
µ(x0)

2

µ(x)4(λ(x)2 − 1)(1− 2m/x0)(Xλ(x)/x− 1)

×
(

dx+ ǫs2µ(x)
2

√

(λ(x)2 − 1)

(

Xλ(x)

x
− 1

)(

1− 2m/x0

µ(x0)2
− 1− 2m/x

µ(x)2

)

dtPG

)2

+x2dΩ2 (68)

in a gauge of Painlevé–Gullstrand type. Unlike the clas-
sical solution in this gauge, slices of constant tPG are not
flat, owing to a position-dependent factor of (Xλ(x)/x−
1)−1. The metric is degenerate at the signature-change
hypersurface, x = xλ defined by Xλ(xλ) = xλ, but not at
the horizon x = 2m. It can be used in the interior as well

as the exterior of the black hole. It is also well-defined
in the Euclidean region x > xλ, where the square root
remains real (using λ > 1, which is required for signature
change to be possible).
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2. Painlevé–Gullstrand slicing in the canonical theory

We have obtained the metric in a slicing analogous to
the classical Painlevé–Gullstrand gauge by deriving a co-
ordinate transformation from the exterior Schwarzschild
region. Covariance of the underlying theory requires that
the same metric coefficients can be obtained from the
canonical equations with suitable gauge choices. In par-
ticular, while e1 = x2 can still be used, staticity in the
Schwarzschild gauge should be replaced by the condition
of uniform lapse, N = 1. The radial component of the
emergent line element and the shift vector are then de-
termined by the canonical equations of motion and con-
straints.
A non-vanishing shift vector makes it possible that k1

and k2 are non-zero even for time-independent e1. The
diffeomorphism constraint implies that these two phase-
space functions are related by

k1 =
e2
2x

k′2 . (69)

The Hamiltonian constraint then implies a first-order dif-
ferential equation relating k2 and e2:

e2
2x

k22 + e2k2k
′
2 +

e2
2x

− 3x

2e2
+

x2

e22
e′2 = 0 . (70)

Using ė1 = 0 according to one of the gauge conditions,
the equation of motion for e1 with N = 1 implies

Mx+xµk2

√

1− sλ2k22 + sλ2µ
x3

e22

k2
√

1− sλ2k22
= 0 (71)

from which we obtain the shift vector M as a function of
e2 and k2.
We need one additional condition, supplied by the

equation of motion for e2. We assume that this func-
tion is time-independent, as in the classical Schwarzschild
solution, but may differ from the classical expression, x.
Using e1 = x2, the Hamiltonian constraint (22) simplifies
to

H [1] =

∫

dxµ
√

1− sλ2k22

(

sλ2 x
2

e22

k2(e2k
′
2 − 2xk1)

1− sλ2k22
− e2k

2
2

2x
− 2xk1k2 −

x2e′2
e22

+
3x

2e2
− e2

2x

)

(72)

and, with ė2 = 0, implies

0 = s

(

µλ2x2k22

e2
√

1− sλ2k22

)′

+ s
µλ2x2(k′2 − 2xk1/e2)

e2
√

1− sλ2k22

+
µe2k2
x

√

1− sλ2k22 + 2µxk1

√

1− sλ2k22 + (Me2)
′

= s

(

µλ2x2k22

e2
√

1− sλ2k22

)′

+
µe2k2
x

√

1− sλ2k22

+µe2k
′
2

√

1− sλ2k22 + (Me2)
′ . (73)

Equations (71) and (73) contain the combination

f(x) =
µe2
√

1− sλ2k22
x

(74)

in several places, which may be used instead of e2. Doing
so, we obtain

Me2 + xk2f +
sλ2µ2xk2

f
= 0 (75)

and

s

(

µ2λ2xk2
f

)′

+ (k2 + xk′2)f + (Me2)
′ = 0 . (76)

Combining the last two equations, several terms cancel
out and we arrive at f ′ = 0, such that f = 1/C2 is

constant and

e2(x) =
x

C2µ(x)
√

1− sλ(x)2k2(x)2
. (77)

In the Hamiltonian constraint, we then have the k2-
independent contribution

1− 3
x2

e22
+ 2

x3

e32
e′2

= 1− C2
2µ

2(1− sλ2k22)

−2C2
2xµ

√

1− sλ2k22

(

µ
√

1− sλ2k22

)′

= 1− C2
2 (xµ

2(1− sλ2k22))
′ (78)

which has to equal−k22−2xk2k
′
2 = −(xk22)

′ for the Hamil-
tonian constraint to vanish. Therefore,

(x(k22 − C2
2µ

2(1− sλ2k22)))
′ = −1 (79)

or

k2 = ±
√

C2
2µ

2 − 1 + Ck/x

1 + sC2
2µ

2λ2
(80)

with an integration constant Ck, such that (C2
2µ

2 − 1 +
Ck/x)/(1 + sC2

2µ
2λ2) ≥ 0 in a given range of x. We

obtain

1− sλ2k22 =
1 + sλ2(1− Ck/x)

1 + sC2
2µ

2λ2
(81)
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and

e2 =
x

C2µ

√

1 + sC2
2µ

2λ2

1 + sλ2(1− Ck/x)
(82)

provided x is such that (1 + sλ2 − sλ2Ck/x)/(1 +
sC2

2µ
2λ2) ≥ 0. The shift vector

M = −µ

(

1 +
sλ2µ2

f2

)

k2

√

1− sλ2k22 (83)

= s2µ
√

1 + sλ2(1− Ck/x)
√

C2
2µ

2 − 1 + Ck/x

then follows from (75), where s2 = ±1.
Finally, the emergent radial metric is given by

qemxx =
1

µ2

∣

∣

∣

∣

1 +
x2

e22

sλ2

1− sλ2k22

∣

∣

∣

∣

−1
e22
x2

=
1

C2
2µ

4

1

|1 + sλ2 − sλ2Ck/x|
(84)

with the signature factor

ǫ = sgn(1 + sC2
2µ

2λ2) , (85)

Comparing the radial metric in the case of s = −1 with
(68), we identify the free constants as

C2 =

√

1− 2m/x0

µ(x0)
(86)

and

Ck = 2m. (87)

We arrive at the emergent line element

ds2em = −ǫdt2PG +
µ(x0)

2

µ(x)4|1 + sλ2|(1− 2m/x0)

1

|1−Xλ(x)/x|
(88)

×
(

dx+ s2µ(x)
2

√

|1 + sλ2|
(

1− Xλ(x)

x

)

√

1− 2m/x0

µ(x0)2
− 1− 2m/x

µ(x)2
dtGP

)2

+x2dΩ2 .

With this choice of constants, motivated by the previ-
ous Painlevé–Gullstrand gauge, the signature factor de-
pends on the constant x0:

ǫ = sgn

(

1− µ(x)2

µ(x0)2
λ(x)2

(

1− 2m

x0

))

, (89)

where we have taken s = −1 because only in this case
does signature change occur. For the same reason, we
may assume λ2 > 1 in a region around the signature-
change hypersurface. The conditions given by reality of
k2 and e2 can now be rewritten simply as

(

1− 2m/x0

µ(x0)2
− 1− 2m/x

µ(x)2

)

ǫ ≥ 0 , (90)

(λ2 − 1)(Xλ/x− 1)ǫ ≥ 0 . (91)

Lorentzian signature ǫ = +1 then requires that x < x0

and x < xλ, while Euclidean signature ǫ = −1 requires
that x > x0 and x > xλ, provided that µ does not in-
crease faster than 1− 2m/x. The choice x0 = xλ allows
us to connect Lorentzian and Euclidean signature at the
signature-change hypersurface.

IV. CAUSAL STRUCTURE NEAR THE

SIGNATURE CHANGE HYPERSURFACE

We have obtained covariant models with timelike
signature-change hypersurfaces for s = −1 and λ > 1
in a region around the hypersurface. Different meth-
ods such as limiting procedures and coordinate changes
can be applied to elucidate the causal structure of such
space(-time)s.

A. Asymptotic behavior

The metric (40) contains several x-dependent terms
that modify some of the classical large-x behavior of the
Schwarzschild solution. Moreover, signature change at
x = xλ prevents us from taking the full limit of x → ∞
within the Lorentzian region. A more interesting range
is given by x asymptotically close to xλ, in which some
of the metric factors are approximately constant.

Introducing the coordinate transformation x = xλ − ρ
from x to a positive ρ, the line element has the asymptotic
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form

ds2em = −ǫ

(

1− 2m

xλ

)

dt2 (92)

+ǫ
xλ/(µ

2(λ2 − 1))

(1− 2m/xλ)

dρ2

ρ
+ x2

λdΩ
2

with leading-order terms in an expansion by ρ. The ρ-
component of the metric remains non-constant in these
coordinate. However, the line element becomes mani-
festly Minkowskian (up to constant scalings of the coor-
dinates) by defining a new coordinate

X = 2
√
ρ (93)

such that

ds2em = −
(

1− 2m

xλ

)

dt2 (94)

+
xλ/(µ

2(λ2 − 1))

(1− 2m/xλ)
dX2 + x2

λdΩ
2

asymptotically close to the signature-change hypersur-
face on the Lorentzian side, ρ > 0 and ǫ = 1. These
asymptotic geometries can be used to infer the light-cone
structure shown in Fig. 1.
The same procedure can be used on the other side,

ρ < 0 and ǫ = −1, instead defining the coordinate XE =
2
√−ρ of 4-dimensional Euclidean space:

ds2em =

(

1− 2m

xλ

)

dt2 (95)

+
xλ/(µ

2(λ2 − 1))

(1− 2m/xλ)
dX2

E + x2
λdΩ

2 .

Since the locally flat asymptotic line elements (94) and
(95) are related by a single sign change, a geodesic asymp-
totically close to the hypersurface-deformation surface
(given by a straight line in the coordinates of (94) and
(95), respectively, has a unique limiting direction at the
hypersurface that can be used to obtain an unambiguous
extension across signature change. The signature-change
hypersurface therefore does not imply geodesic incom-
pleteness.

B. Timelike worldlines

The local Minkowski form asymptotically close to the
signature-change hypersurface suggests that this hyper-
surface can be reached in finite proper time from the
Lorantzian side. This expectation can be confirmed ex-
plicitly by a derivation of timelike geodesics, and in a
similar manner for lightlike geodesics in the next subsec-
tion.

Using the results of Section III C, we obtain the co-
velocity of a radially infalling object at rest at x0, with
components

vt = −
√

1− 2m

x0
,

vx =
1

µ
√
λ2 − 1

2m

x

(

1− 2m

x

)−1(
Xλ

x
− 1

)−1/2√

1− x

x0
. (96)

The radial component vx diverges at the signature-change hypersurface unless x0 = xλ, but v
x = qxxvx is finite, and

so is dx/dt = vx/vt using vt = −vt/N
2:

dx

dt
= µ

√

λ2 − 1

(

1− 2m

x

)

√

2m

x

√

(

Xλ

x
− 1

)(

1− x

x0

)

. (97)

This component vanishes at x = xλ, in agrement with the tangential approach shown in Fig. 1. In particular, since
the inverse dt/dx diverges at x = xλ, for a static observer at constant x with near-Schwarzschild time t it would take
an infinite amount of time for a massive object or a light ray to reach the signature-change hypersurface. In this
regard, this hypersurface appears as a horizon.

The proper-time distance along a geodesic starting at some point xi < xλ and going up to xλ, parameterized by
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FIG. 1: A light cone asymptotically close to the signature-
change hypersurface (dashed), where light rays end in a tan-
gential direction (circles). Using the locally flat asymptotic
line elements (94) and (95), the light rays can be unambigu-
ously extended as spacelike geodesics in the Euclidean region.

coordinates as functions of x, is given by

τλ =

∫ xλ

xi

√

−gµν
∂xµ

∂x

∂xν

∂x
dx =

∫ xλ

xi

√

−gtt

(

∂t

∂x

)2

− 2gtx
∂t

∂x
− qxx dx

=

∫ xλ

xi

1

|vx|

√

N2 − qxx (M + vx)
2
dx . (98)

Using the Schwarzschild metric (40), this equation becomes

τλ =

∫ xλ

xi

1

µ
√
λ2 − 1

√

x

2m

(

1− 2m

x

)−1/2 (
Xλ

x
− 1

)−1/2(

1− x

x0

)−1/2

×
√

1−
(

1− x

x0

)

2m

x
dx , (99)

Consider now the coordinate expansions xi = xλ − ρi and x = xλ − ρ with positive ρi ≪ xλ and ρ, and x0 > xλ. To
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leading order, to which µ and λ may be treated as constants, we have

τλ =
1

µ
√
λ2 − 1

√

xλ

2m

(

1− 2m

xλ

)−1/2(

1− xλ

x0

)−1/2
√

1−
(

1− xλ

x0

)

2m

xλ

×
∫ ρi

0

√

xλ

ρ
dρ

=
2xλ

µ
√
λ2 − 1

√

ρi
2m

(

1− 2m

xλ

)−1/2(

1− xλ

x0

)−1/2
√

1−
(

1− xλ

x0

)

2m

xλ
, (100)

which is finite and real for x0 > xλ. (The value is com-
plex if x0 < xλ because geodesics with such an initial
condition do not reach the signature-change hypersur-
face.) In the special case of the most energetic geodesic,
formally given by x0 → ∞, this result simplifies to

τλ =
2xλ

µ
√
λ2 − 1

√

ρi
2m

. (101)

The larger xλ is, the larger this proper time.

C. Null worldlines

For radial null worldlines in (40), we find a relation
between dt and dx given by

dt = ± 1
√

µ2(λ2 − 1)(Xλ/x− 1)

dx

(1− 2m/x)
. (102)

We can use this result to simplify the co-velocity

dκ = −vtdt− vxdx

= −vt

(

dt+
(

√

N2qxx +M
)−1

dx

)

, (103)

with a constant vt < 0 (such that vt > 0) and choosing
the negative sign of vx in the second term for infalling
light rays.
For a timelike worldline, we compute

dκ = −vνdx
ν = −gµν

dxµ

dτ
dxν

= −dτ

(

gµν
dxµ

dτ

dxν

dτ

)

= dτ (104)

and therefore κ along the worldline is proper time up to
a constant shift. The expression dκ in (103), which uses
the geodesic condition through constant vt, can be locally
integrated to a space-time function κ(t, x) because it is
closed since vx depends only on x, and therefore locally
exact. The result κ(t, x) can be interpreted as a func-
tion that determines a foliation of a region of space-time
into curves dκ = 0 transversal to timelike geodesics, with
a family of normal directions that integrate to timelike
geodesics.
For null worldlines, the analog of the calculation (104)

merely shows that dκ = 0 and therefore κ is constant
along any null worldline, without providing a relationship
with the affine parameter. We do not obtain the affine
parameter along null geodesics as an analog of proper
time. Nevertheless, we may use the expression dκ in or-
der to foliate space-time into null rays, given by constant
κ which then plays the role of a null coordinate. This
foliation allows us to estimate distances to the signature-
change hypersurface as follows: We use one family for
null worldlines, given by the infalling case, in order to
introduce κ as a null coordinate constant along infalling
null worldlines. (The same null coordinate will be used
in order to transform to Eddington–Finkelstein form in
the next subsection.) This coordinate then provides a
certain distance measure along a single outgoing world-
line that approaches the signature-change hypersurface
as it crosses different infalling null worldlines, which cor-
responds to the distance one may use to draw a conformal
diagram. If this null-coordinate distance is finite, an ob-
server can send only a finite number of infalling light rays
at regular intervals before reaching the signature-change
hypersurface.

Along a geodesic:

dκ = −vt

(

± 1
√

(λ2 − 1)(Xλ/x− 1)

1

(1− 2m/x)
+
(

√

N2qxx +M
)−1

)

dx . (105)

As before, N = µ−1
√

1− 2m/x and M = 0 while

qxx =
1

µ2(λ2 − 1)(1− 2m/x)(Xλ/x− 1)
(106)

and thus

qxx = µ2(λ2 − 1)(1− 2m/x)(Xλ/x− 1) (107)
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Therefore,

dκ =
−vt(±1 + 1)

(1− 2m/x)
√

(λ2 − 1)(Xλ/x− 1)
dx (108)

vanishes along infalling null wordlines, as expected, and
gives us a non-zero null distance

dκ =
−2vt

(1− 2m/x)
√

(λ2 − 1)(Xλ/x− 1)
dx (109)

when integrated along outgoing worldlines.
Asymptotically close to the signature-change hypersur-

face, x = xλ − ρ with 0 ≤ ρ << xλ, the leading-order
expression

∫

dκ =

∫ −2vt

(1− 2m/xλ)
√

(λ2 − 1)ρ/xλ

dρ (110)

can be reduced to

κ =
−2vt

(1− 2m/xλ)
√

(λ2 − 1)/xλ

∫ ρi

0

dρ√
ρ

(111)

because λ is approximately constant. The integral

κ =
−4vt

√
ρi

(1− 2m/xλ)
√

(λ2 − 1)/xλ

(112)

is finite.

D. Null coordinates

Using a null coordinate v, the emergent metric in
Eddington–Finkelstein form is given by

ds2 = −
(

1− 2m

x

)

du2 +
2

|µ|
√
λ2 − 1

1
√

Xλ/x− 1
dudx .

(113)
(For a generic 2-dimensional line element, the
Eddington–Finkelstein form is given by

ds2 = −N2 − qxxM
2

(vt)2
du2 + 2qxx

√

N2qxx
vt

dudx (114)

with a null coordinate u.)

For constant µ and λ, the (outgoing) null coordinate is
related to the original coordinates by a direct integration
of du = dκ using equations from the preceding subsec-
tion:

u = t− s

|µ|
√

|λ2 − 1|

(√
x
√
xλ − x+ (4m+ xλ) arctan

(

√

xλ/x− 1
)

+
4m

√
2m√

xλ − 2m
arctanh

(
√

2m

x

xλ − x

xλ − 2m

)

)

+ c (115)

with an integration constant c, where we have absorbed the constant vt into the null coordinate. The coordinate
becomes imaginary if we try to extend it to x > xλ, where null worldines no longer exist. The modified Eddington–
Finkelstein metric (113) still has a coordinate singularity at the signature-change hypersurface.
The Eddington–Finkelstein form (114) can directly be transformed to double-null or Kruskal–Szekeres type variables

by introducing

dv =
du

(vt)2
+− 2Nq

3/2
xx

N2 − qxxM2

dx

vt
. (116)

In the present case, we obtain

ds2 = −
(

1− 2m

x

)

dudv (117)

without modifications from the classical solution. However, the null coordinates have modified relationships with the
Schwarzschild-type coordinates x and t: We have

u = t− x∗ , v = t+ x∗ (118)

with

x∗ = c+
1

|µ|
√

|λ2 − 1|

(√
x
√
xλ − x+ (4m+ xλ) arctan

(

√

xλ/x− 1
)

+
4m

√
2m√

xλ − 2m
arctanh

(
√

2m

x

xλ − x

xλ − 2m

)

)

(119)
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for constant µ and λ. The null coordinates become imaginary for x > xλ and hence end at the signature-change
hypersurface, even though (117) does not reveal a coordinate singularity at this place.

The metric (41) describing the Euclidean region does not allow null coordinates in the usual sense. But if we apply
a Wick-like rotation t → it̄, the metric becomes Lorentzian once again and is identical to that of the Lorentzian region
(40) up to the change in time coordinate and retaining a positive radial component. Therefore, in these complex
coordinates, one can perform the same procedure as used above in order to obtain null coordinates and a metric of
the Kruskal–Szekeres form.

The result is almost identical, the metric now given by

ds2 = −
(

1− 2m

x

)

dūdv̄ (120)

where the Schwarzschild coordinates are related to the null ones by

ū = t̄− x̄∗ , v̄ = t̄+ x̄∗ (121)

with

x̄∗ = c+
1

|µ|
√

|λ2 − 1|

(√
x
√
xλ − x+ (4m+ xλ) arctan

(

√

1− xλ/x
)

+
4m

√
2m√

xλ − 2m
arctanh

(
√

2m

x

x− xλ

xλ − 2m

)

)

. (122)

It is therefore possible to draw a single Penrose dia-
gram of the usual form, with both regions joined at the
signature-change hypersurface.

V. CONCLUSIONS

We have obtained explicit analytical solutions for a
large class of spherically symmetric black-hole models of
emergent modified gravity with two generic modification
functions. Focussing on a new type of signature change
on timelike hypersurfaces at low curvature, we have ana-
lyzed the causal structure and confirmed that a Euclidean
wall around the universe may be consistent with astro-
nomical and cosmological observations provided the mod-
ification function λ is small in a large range of the radial
coordinate x but eventually crosses the threshold λ = 1
at large distances. The transition point is free within
the general setting of emergent modified gravity and can
easily be chosen to happen beyond the radius of the cur-
rently observable universe. If a specific candidate for
λ(e1) can be derived from a proposed quantum theory of
gravity, for instance through Hamiltonian renormaliza-
tion as a possible source of such running coefficients, the
distance to the transition point would be a possible test
of a given proposal.
Conceptually, our solutions in different gauges, related

by explicit coordinate transformations, demonstrate full
covariance even in regions that include a signature-
change hypersurface. Moreover, we demonstrated that
the Ricci and Kretschmann scalars remain finite there,
and that any geodesic in the Lorentzian region allows

a unique extension as a spacelike geodesic in the Eu-
clidean region, using asymptotic locally flat line elements
that are available in our covariant formulation. Signature
change of this form is therefore non-singular.

Signature change in these models requires a negative
value of the sign parameter s, which always appears in the
combination sλ(e1)

2 in modified equations of motion and
line elements. This combination of parameters allows us
to distinguish between the two cases of s = 1, in which
signature change does not happen, and s = −1, which
allows signature change provided λ > 1 in some region.
Another distinction is that s = 1 implies modifications
of the k2-dependence in the Hamiltonian constraint by
bounded functions, while these functions are unbounded
for s = −1. Accordingly, the large curvature behavior is
also distinct in the two cases, with possible singularity
avoidance for s = 1 (as shown for constant λ in [3, 4])
but not for s = −1, as shown here.

The two cases can be combined if we view the full
combination sλ(e1)

2 of parameters as a single continu-
ous modification function, ν(e1), in addition to the old
µ(e1). If this function is negative with |ν(e1)| > 1 at
large e1 and turns positive at sufficiently small e1, there
can be signature change at large distances as well as a
non-singular black hole in the interior.
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